PHYS 1020
Introductory Physics I | Introductory Physics I is an algebra-based introduction to Newtonian mechanics. Topics covered include motion in one and two dimensions, Newton’s laws, momentum, energy and work, and rotational motion. Previous exposure to physics would be an asset but is not essential. | CO: Mathematics 1090 or 109B
CR: PHYS 1050
LH: 3; six laboratory sessions per semester OR: tutorial or problem sessions may be held on weeks when no laboratory is scheduled PR: Level III Advanced Mathematics or Mathematics 1090 or 109B. It is recommended that students have completed at least one high school physics course; and Science 1807 and 1808.
| Fall |
---|
PHYS 1021 Introductory Physics II
| Introductory Physics II is an algebra-based introduction to oscillations, fluids, wave motion, electricity and magnetism, and circuits. | LH: 3; normally there will be six laboratory sessions per semester OR: tutorial sessions may be held on weeks when no laboratory is scheduled PR: PHYS 1020 or 1050, and Mathematics 1090 or 1000, and Science 1807 and 1808.
| Winter
|
---|
PHYS 1050 General Physics I: Mechanics
| General Physics I: Mechanics is a calculus-based introduction to mechanics. The course emphasizes problem solving, beginning with a review of vectors and one-dimensional kinematics. The main part of the course covers motion in two dimensions, forces and Newton’s Laws, energy, momentum, rotational motion and torque, and finally oscillations. For details regarding recommendations for students taking PHYS 1050, see Physics and Physical Oceanography, Note 4.
| CO: Mathematics 1000
CR: PHYS 1020
LH: 3 PR: Mathematics 1000; Science 1807 and 1808.
| Fall |
---|
PHYS 1051 General Physics II: Oscillations, Waves, Electromagnetism
| General Physics II: Oscillations, Waves, Electromagnetism is a calculus-based introduction to oscillations, wave motion, and electromagnetism. Topics include: simple harmonic motion; travelling waves, sound waves, and standing waves; electric fields and potentials; magnetic forces and fields; electric current and resistance; and electromagnetic waves. | CO: Mathematics 1001
LH: 3 PR: PHYS 1050, or 1021, or 1020 (with a minimum grade of 70%) and Mathematics 1001; Science 1807 and 1808.
| Winter
|
---|
PHYS 2053 Fluids and Thermal Physics
| Fluids and Thermal Physics examines elasticity, fluid mechanics, thermodynamics, kinetic theory and statistical mechanics.
| CO: Mathematics 1001 and PHYS 1051
LH: 3 PR: Mathematics 1001 and PHYS 1051; Science 1807 and 1808.
| Winter
|
---|
PHYS 2056 General Physics VI: Modern Physics
| General Physics VI: Modern Physics is special relativity, quanta of light, atomic structure and spectral lines, quantum structure of atoms and molecules, nuclei and elementary particles. | CO: Mathematics 1001 and PHYS 1051
CR: PHYS 2750
LH: 3 PR: Mathematics 1001, PHYS 1050 (or PHYS 1020 and PHYS 1021), and PHYS 1051; Science 1807 and 1808.
| Fall
|
---|
PHYS 2150 The Foundation of Astronomy
| The Foundation of Astronomy represents a general introduction to astronomy. The course emphasizes the scientific method, basic physics, night sky and objects in our solar system. Topics include space science, telescopes, spectroscopy, atomic structure, the formation and evolution of planetary systems, and the detection and properties of exoplanets. | PR: no pre-requisites.
| Fall
|
---|
PHYS 2151 Stellar Astronomy and Astrophysics
| Stellar Astronomy and Astrophysics is atomic structure and spectra. The sun: radiation, energetics, magnetic field. Stars: distance, velocity, size, atmospheres, interiors. Variable stars, multiple stars, clusters and stellar associations. Stellar evolution, interstellar matter, structure of the Milky Way Galaxy. Exterior galaxies, quasi-stellar objects, pulsars. Cosmology. | PR: 6 credit hours in Mathematics at the first year level
| |
---|
PHYS 2400 Subatomic Physics
| Subatomic Physics is an introduction to nuclear and particle physics. Topics include nuclear properties and models; radioactive dating; fission; nuclear reactors; accelerators; the detection, classification, and properties of subatomic particles. Applications in areas such as ecology, dosimetry, medical physics and nuclear astrophysics are discussed. | PR: Level III Advanced Mathematics or Mathematics 1090 or 109B. It is recommended that students have completed at least one of Level II and Level III high school physics courses
| |
---|
PHYS 2820 Computational Mechanics
| Computational Mechanics introduces computational methods in the context of Newtonian mechanics. Numerical differentiation and integration, numerical solutions to differential equations and data analysis are applied to projectile motion, N-body systems, oscillations and problems from astrophysics and geophysics. Implementation of numerical methods using computer programming is emphasized. | CO: Mathematics 2000
LH: 2 PR: Mathematics 2000 and PHYS 1051
| |
---|
PHYS 3060 Electricity and Magnetism
| Electricity and Magnetism is point charges; Coulomb's law; electrostatic field and potential; Gauss' law; conductors; magnetostatics; Ampere's law; Biot-Savart law; dielectric and magnetic materials; electrostatic and magnetostatic energy; Lorentz force; time varying fields; Faraday's law; Lenz's law; Maxwell's equations. | CO: Mathematics 2260 (or the former Mathematics 3260) LH: 3 PR: PHYS 1051 and Mathematics 2260 (or the former Mathematics 3260); Science 1807 and 1808.
| |
---|
PHYS 3061 Electromagnetic Theory
| Electromagnetic Theory includes Maxwell’s equations, energy and momentum in electromagnetic systems, EM waves, potentials and fields, dynamical systems of charges, radiation, the interaction of EM fields with matter, and the relativistic formulation of electromagnetism and its applications. | PR: PHYS 3060
| |
---|
PHYS 3180 Observational Astrophysics
| Observational Astrophysics covers theoretical topics including celestial mechanics, continuous and line spectra, stellar structure and nucleosynthesis, and stellar evolution. Observational topics include planning observations, acquisition of images with a CCD electronic camera, fundamentals of astronomical image processing, photometry, and stellar spectroscopy using a variety of software packages.
| LH: 3 PR: Mathematics 2000, PHYS 2056, PHYS 2151 is recommended.
| |
---|
PHYS 3220 Classical Mechanics I
| Classical Mechanics I covers vector operations, coordinate transformations, derivative of vectors, Newton’s laws, differential equations, kinematics and dynamics of a particle, linear and quadratic air resistance, terminal velocity, momentum of a time varying mass, center of mass systems, angular momentum, moment of inertia, energy, work-energy theorem, forces as the gradient of potential energy, time dependent potential energy, curvilinear one-dimensional systems, energy of a multiparticle system, calculus of variations, and Lagrangian Dynamics. | CO: PHYS 2820, Mathematics 2260 and the former 3220 PR: PHYS 2820, Mathematics 2260 and 3202
|
|
---|
PHYS 3230 Classical Mechanics II
| Classical Mechanics II covers noninertial frames of reference, Newton's second law in a rotating frame, centrifugal force, Coriolis force, motion of rigid bodies, center of mass, rotation about a fixed axis, rotation about any axis, inertia tensor, Euler's equations with zero torque, coupled oscillators, chaos theory, bifurcation diagrams, state-space orbits, Poincare sections, Hamiltonian dynamics, ignorable coordinate, phase-space orbits, Liouville's theorem, scattering angle, impact parameter, differential scattering cross section, and Rutherford scattering. | CO: Mathematics 3202
PR: PHYS 3220, and Mathematics 2260 and 3202
|
|
---|
PHYS 3250 Elementary Particles and Fields
| Elementary Particles and Fields includes the Standard Model, classification of elementary particles and forces of nature, symmetries, conservation laws, quark model, quantum electrodynamics, quantum chromodynamics, and the theory of weak interactions. | PR: Mathematics 3202, Mathematics 2260 (or the former Mathematics 3260), PHYS 2056, PHYS 2400
| |
---|
PHYS 3400 Thermodynamics
| Thermodynamics covers the first and second laws of thermodynamics. Entropy. Thermodynamics of real substances. Kinetic theory of matter. Introduction to statistical mechanics. | PR: Mathematics 2000, PHYS 2053 and PHYS 2750 or 2056
| |
---|
PHYS 3650 Quantum Mechanics I
| Quantum Mechanics I includes a review of elementary quantum physics and covers topics such as wave functions, operators, expectation values, the Schrodinger equation in 1-dimension, states and operators in Hilbert space, coordinate and momentum representations, quantum mechanics in three dimensions, angular momentum, spherically symmetric potentials, and approximation methods. | PR: Mathematics 3202, PHYS 2056, PHYS 3220
| |
---|
PHYS 3820 Mathematical Physics II
| Mathematical Physics II examines the functions of a complex variable; residue calculus. Introduction to Cartesian tensor analysis. Matrix eigenvalues and eigenvectors. Diagonalization of tensors. Matrix formulation of quantum mechanics. Quantum mechanical spin. Vector differential operators in curvilinear coordinate systems. Partial differential equations of Mathematical Physics and boundary value problems; derivation of the classical equations, separation of variables; Helmholtz equation in spherical polar coordinates. | PR: Mathematics 2260 (or the former Mathematics 3260), and PHYS 3810 (or Mathematics 3202)
| |
---|
PHYS 4100 Senior Physics Seminar
| Senior Physics Seminar is a review of current topics in Physics discussed in a seminar format. Seminars are presented by faculty, students, and guest speakers. Topics are normally drawn from the fields of sub-atomic & nuclear physics or astronomy & cosmology. This is a designated Writing course | PR: normally restricted to Physics students who have completed 78 credit hours or more
| |
---|
PHYS 4880 Physics Laboratory
| Physics Laboratory introduces the student to advanced laboratory work in several areas of physics | PR: Physics students who have completed 60 credit hours or more; Science 1807 and 1808
| |
---|
PHYS 4950 Research Experience in Physics
| Research Experience in Physics is an opportunity for students to participate in original research under the supervision of a faculty advisor. Students are required to present a written report and to give a seminar on their work. | PR: Physics students who have completed 78 credit hours or more and permission of the Physics Program Chair
| |
---|